In the figure below, if lines PQ and RS intersect at point T, such that, ∠PRT = 40∘, ∠RPT = 95∘ and ∠TSQ = 75∘, find 2 ∠SQT.
In △PRT, ∠P + ∠R + ∠1 = 180∘ (angle sum property)
95∘ + 40∘ + ∠1 = 180∘
∠1 = 180∘ – 135∘ = 45∘
∠1 = ∠2 (vertically opposite angles)
∠2 = 45∘
In △TQS, ∠2 + ∠Q + 75∘ = 180∘
45∘ + ∠Q + 75∘ = 180∘
∠Q + 120∘ = 180∘
∠Q = 180∘ – 120∘
∠Q = 60∘
∠SQT = 60∘
2 (∠SQT) = 120∘