In the figure below, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70∘ and ∠BOD = 40∘, find (3∠BOE).
90∘
∠AOC + ∠BOE + ∠COE = 180∘ (Angles on a straight line equals 180∘)
Given, ∠AOC + ∠BOE = 70∘
So, ∠COE = 180∘ - (∠AOC + ∠COE) = 180∘ - 70∘= 110∘
Again, ∠COE + ∠BOE + ∠BOD = 180∘ (Angles on a straight line equals 180∘)
We know that, ∠COE = 110∘ and ∠BOD = 40∘
So, ∠BOE = 180∘ - ∠COE - ∠BOD= 180∘ - 110∘ - 40∘ = 30∘
⟹ 3 × (∠ BOE) = 90∘