In the figure below (notdrawntoscale),rectangleABCDisinscribedinthecirclewithcentreofO.ThelengthofsideABisgreaterthanthatofsideBC.TheratiooftheareaofthecircletotherectangleABCDis\pi : \sqrt {3}.ThelinesegmentDEintersectsABatEsuchthat\angle ODC = \angle ADE.WhatistheratioAE : AD$?
Let the radius of the circle be ‘R’ and ∠ODC=∠ADE=θ. If OM is drawn perpendicular to DC,
DM=R×cosθ
OM=R×sinθ
Length of rec\tan gle ABCD,
AB=CD=2DM=2R×cosθ
AD=BC=2OM=2R×sinθ
Area of rectangle =AB×BC=2R×cosθ×2R×sinθ=2R2sin2θ
Area of circle =πR2
According to the question,
πR2:2R2sin2θ=π:√3
sin2θ=√32=sin60∘.
θ=30∘
In ΔADE,tanθ=AEAD
AE:AD=tan30o=1√3=1:√3