In the figure below, OP, OQ, OR and OS are four rays.
Find (∠ POQ + ∠ QOR + ∠ SOR + ∠ POS)3.
Produce ray OQ backwards to a point T, so that, TOQ is a line.
Now, ray OP stands on the line TOQ.
Therefore, ∠TOP+∠POQ=180∘ (1) (linear pair axiom)
Similarly, ray OS stands on the line TOQ.
Therefore, ∠TOS+∠SOQ=180∘ (2)
But, ∠SOQ=∠SOR+∠QOR
So, (2) becomes,
∠TOS+∠SOR+∠QOR=180∘ (3)
Now, adding (1) and (3), we get,
∠TOP+∠POQ+∠TOS+∠SOR+∠QOR=360∘ (4)
But, ∠TOP+∠TOS=∠POS
Hence, (4) becomes,
∠POQ+∠QOR+∠SOR+∠POS=360∘
So, (∠ POQ + ∠ QOR + ∠ SOR + ∠ POS)3 = 360∘3 = 120∘