wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

In the figure below. PQR is a right-angle triangle right angled at Q. XY is parallel to QR. PQ=6 cm, PY=4 cm and PX:XQ=1:2. Calculate the lengths of PR and QR.

179359_6bf91bc7804f455d8356164d17c854f1.png

A
PR=12 cm; QR=10.392 cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
PR=13 cm; QR=11.392 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
PR=11 cm; QR=12.392 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A PR=12 cm; QR=10.392 cm
Given, PXXQ=12

XQPX=2
PX+XQPX=2+1
PQPX=3
In PQR and PXY, we have
XPY=QPR (Common angle)
PXY=PQR=90 (XYQR)
XYP=QRP (third angle)
Hence, PQRPXY (AAA rule)
Hence, PQPX=QRXY=PRPY (Corresponding sides)
PRPY=3
Therefore, PR=3×PR=3×4=12 cm
Now, In PQR, we have
PQ2+QR2=PR2 (Pythagoras theorem)
62+QR2=122
QR2=14436
QR=108
QR=10.392 cm

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Similarity of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon