In the figure below, ray OS stands on a line POQ. Ray OR and ray OT are angle bisectors of ∠ POS and ∠ SOQ respectively. If ∠ POS = x, then find ∠ ROT.
90∘
Ray OS stands on the line POQ, so,
∠POS+∠SOQ=180∘ {Linear pair}
Given, ∠POS=x.
Hence ,x+∠SOQ=180∘
⇒∠SOQ=180∘–x.
Now, ray OR bisects ∠POS.
Hence, ∠ROS=12×∠POS
⇒12×x=x2.
Similarly, ∠SOT=12×∠SOQ
⇒12×(180∘−x)=90∘–x2
Hence , ∠ROT=∠ROS+∠SOT
⇒x2+90∘–x2=90∘.