In the figure below, ray OS stands on a line POQ. Ray OR and ray OT are angle bisectors of ∠POS and ∠SOQ, respectively. If ∠POS = x, find ∠ROT.
90∘
Here, ∠POS and ∠SOQ are adjacent angles with non common arms OP and OQ forming a line.
⇒∠POS + ∠SOQ = 180∘ (Linear pair)
∠POS = x (Given)
⇒ x + ∠SOQ = 180∘
⇒ ∠SOQ = 180∘ – x
Now, ray OR bisects ∠POS.
⇒ ∠ROS = 12 × ∠POS
⇒ ∠ROS=x2
Similarly, ∠SOT=12 × ∠SOQ
⇒ ∠SOT=12 × ( 180∘ - x)
⇒ ∠SOT=90∘ – x2
⇒∠ROT = ∠ROS + ∠SOT
⇒∠ROT = x2 + 90∘ – x2
⇒∠ROT= 90∘