In the figure below, ray OS stands on a line POQ. Ray OR and ray OT are angle bisectors of ∠POS and ∠SOQ, respectively. If ∠POS=x, find ∠ROT.
Ray OS stands on the line POQ, so that,
∠POS+∠SOQ=180∘
But, ∠POS=x
Hence, x+∠SOQ=180∘
∠SOQ=180∘–x
Now, ray OR bisects POS.
Hence, ∠ROS=12×∠POS⇒12×x=x2
Similarly, SOT=12×∠SOQ⇒12×(180∘−x)=(90∘–x2)
∠ROT=∠ROS+∠SOT⇒x2+90∘–x2=90∘