In the figure below, △ABC ≅ △BED, ∠DEB = 115∘ and ∠CAB = 25∘. It can be concluded that BC||ED.
True
Since ΔABC≅ΔBED,∠DBE=∠CAB=25∘ (CPCT)And, ∠DEB=∠CBA (CPCT)Now, ∠BDE+∠DBE+∠BED=180∘⇒∠BDE+25∘+115∘=180∘⇒∠BDE=40∘Also, ∠CBA+∠CBD+∠DBE=180∘(Linear set of angles)⇒∠CBA+25∘+115∘=180∘⇒∠CBA=40∘⇒∠BDE=∠CBD and they are alternate angles, so BC||ED.