In the figure, CD || AE and CY || BA.
(i) Name a triangle equal in area of△CBX.
(ii) Prove that ar(△ZDE)=ar(△CZA).
(iii) Prove that ar (BCZY) = ar(△EDZ)
Given: IN the figure,
CP || AE and CY || BA
Proof:
(i) △CBXand△ CYX are on the same base BY and between same parallels.
∴ar(△CBX)=ar(△CYX)
(ii) △ADEand△ACE are on the same base and between the same parallels (AE || CD)
∴ar(△ADE)=ar(△ACE)
Substracting ar(△AZE) from both sides
⇒ar(△ADE)−ar(△AZE)=ar(△ACE)−ar(△AZE)⇒ar(△ZDE)=ar(△ACZ)⇒ar△ZDE=ar△CZ
(iii) ∵ △xACY and BCY are on the same base CY and between the same parallels
∴ar(△ACY)=ar(△BCY)Nowar(△ACZ)=ar(△ZDE)⇒ar(△ACY)+ar(△CYZ)=ar(△EDZ)⇒ar(△BCY)+ar(△CYZ)=ar(△EDZ)∴ar(BCZY)=ar(△EDZ)