REF.Image
As exterior angle of a cyclic
quadrilateral is equal to the opposite
interior angle, we have, ∠PBD=∠ACD and
∠PDB=∠BAC
Therefore, by AA criteria for symmetry,
△PBD∼△PAC
Let angle ∠OBA=x=∠OAB(OA=OB=r)
and ∠OBD+∠ODB+α=π and ∠OBD=∠ODB
⇒∠OBD=∠ODB=π2−α2; similarly ∠OAC=π2−θ2
Now, ∠ABO+∠OBD+∠DBP=π
⇒x+π2−α2+∠DBP=π
⇒∠DBP=π2+α2−x
Now, ∠PBD=∠BAC (△PBD∼△PAC)
⇒π2+α2−x=x+π2−θ2⇒2x=α2+θ2⇒x=θ+α4
From symmetry, ∠PBD=∠PDB and ∠PBD+∠PDB+∠BPD=π
⇒2(∠PBD)+∠BPD=π⇒∠BPD=π−2(π2+α2−θ4−α4)
⇒∠BPD=π−π−α+θ2+α2⇒∠BPD=θ−α2