To prove ,PA×PB=PC×PD
Consider △PCA and PBD
∠PCA=∠PBD (Angle in the same segment)
∠APC=∠BPD (Vertically opposite angles)
△PCA∼△PBD (AA Similarity\right)
P lies outside the circle,
∠PCA+∠CAB=1800 (Linear pair)
∠CAB+∠PDB=1800 (Opposite angles of a cyclic)
∠PAC=∠PDB
In △PCA and △PBD
∠PAC=∠PDB (proved above)
∠APC=∠DPB (common)
∠PCA∼∠PBD (AA similarity)
Hence
PAPD=PCPB
PA×PB=PC×PD
Hence proved