Since D and E are the points of trisection of BC. Therefore, BD=DE=CE.
Let BD=DE=CE=x.
Then, BE=2x and BC=3x.
(1 Mark)
In right triangles ΔABD,ΔABE and ΔABC, we have
⇒AD2=AB2+BD2
⇒AD2=AB2+x2
AE2=AB2+BE2
⇒AE2=AB2+4x2
and, AC2=AB2+BC2
⇒AC2=AB2+9x2
(1.5 Marks)
Now consider,
8AE2−3AC2−5AD2
=8(AB2+4x2)−3(AB2+9x2)−5(AB2+x2)
⇒8AE2−3AC2−5AD2=0
⇒8AE2=3AC2+5AD2
(1.5 Marks)