In the figure, ΔPQR is an isosceles triangle with PQ = PR and m ∠PQR=35∘, Find m ∠QSR and m ∠QTR
In the figure, ΔPQR is an isosceles triangle with PQ = PR.
∠PQR=35∘
∴PRQ=35∘
But ∠PQR+∠PRQ+∠QPR=180∘ (Sum of angles of a triangle)
⇒35∘+35∘+∠QPR=180∘
⇒70∘+∠QPR=180∘
⇒∠QPR=180∘−70∘=110∘
∵∠QSR=∠QPR (Angles in the same segment of circles)
∴∠QSR=110∘
But PQTR is a cyclic quadrilateral.
∴∠QTR+∠QPR=180∘
⇒∠QTR+110∘=180∘
⇒∠QTR=180∘−110∘=70∘
Hence, ∠QTR=70∘