Given: OT=OS=r and OP=2r
In ΔTOP,
sinTPO=TOOP
= r2r=12
Since, sin30o=12
Therefore, ∠TPO=30o
Similarly for ∠OPS=30o
Now,
∠TPS=∠TPO+∠OPS
= 30o+30o=60o
As we know that ∠TPS+∠TOS=180o
So, ∠TOS=180o−∠TPS
= 180o−60o=120o
Now, in ΔTOS, let ∠OST=∠OTS=xo
Also, ∠TOS+xo+xo=180o
120o+2xo=180o
2xo=60o
xo=30o
Therefore, ∠OST=∠OTS=30o.