In the figure given above the sides, AB and AC of △ABC are produced to points E and D respectively. If bisectors BO and CO of ∠CBE and ∠BCD respectively meet at point O, then prove that ∠BOC=90o−12∠BAC.
Open in App
Solution
∠CBE+yo=180o .........(a) {Linear Pair}
∠BCD+zo=180o .........(b) {Linear Pair}
Ray BO is the bisector of ∠CBE.
Therefore, ∠CBO=12∠CBE
=12(180o−yo) {from (a)}
=90o−yo2 ...... (1)
Similarly, ray CO is the bisector of ∠BCD.
Therefore, ∠BCO=12∠BCD
=12(180o−zo) {from (b)}
=90o−zo2 ...... (2)
In △BOC,
∠BOC+∠BCO+∠CBO=180o ...... (3)
Substituting (1) and (2) in (3), we get,
∠BOC+90o−zo2+90o−yo2=180o
So, ∠BOC=zo2+yo2
or, ∠BOC=12(yo+zo) ...... (4)
But, xo+yo+zo=180o (Angle sum property of a triangle)