The correct option is D 52
LetthebiggerΔbeAOBwithA=(0,2),B=(3,0)&O=(0,0).Clearly∠O=90oandOA&OBlieontheaxes.∴OA=Thedifferencebetweentheordinates=2−0=2unitsandOB=Thedifferencebetweentheabscissae.∴OB=3−0=3units.∴arΔAOB=12OA×OB=122×3squnits=3squnits.AgainwetakethesmallerΔtobePOQwithP=(0,1),Q=(1,0)andO=(0,0).BythesimilarargumentsasabovewehaveOP=Thedifferencebetweentheordinates=1−0=1unitandOQ=Thedifferencebetweentheabscissae=1−0=1unit.∴arΔPOQ=12OP×OQ=12×1×1squnit=12squnit.∴Theareaoftheshadedportion=(arbiggerΔ)−(arsmallerΔ)=3−12squnit=52squnitsAns−OptionD