Since D is the mid-point of BC,
From Apollonius theorem,
AB2+AC2=2(BD2+AD2)32+52=2(BD2+42)(9+252)=BD2+16⇒ BD2=17−16⇒ BD=1 cm.
In the figure given below AB = 3 cm, AC = 5 cm and AD = 4 cm and D is the midpoint of BC. Then the length of BD is :
In a ΔABC, AD is the bisector of ∠A, meeting side BC at D. (i) If BD= 2.5 cm, AB = 5 cm and AC = 4.2 cm, find DC. (ii) If BD= 2 cm, AB = 5 cm and DC = 3 cm, find AC. (iii) If AB= 3.5 cm, AC = 4.2 cm and DC = 2.8 cm, find BD. (iv) If AB =10 cm, AC =14 cm and BC = 6 cm, find BD and DC. (v) If AC = 4.2 cm, DC = 6 cm and BC = 10 cm, find AB. (vi) If AD= 5.6 cm, AC = 6 cm and DC = 3 cm, find BC. (vii) If AB= 3.6 cm, BC e 6 cm and BD = 32 cm, find AC. (viii) If AB =10 cm, AC = 6 cm and BC = 12 cm, find BD and DC