In the figure given below AB, CD, and EF are parallel lines. Given AB = 9 cm, DC = y cm, EF = 4.5 cm, BC = x cm, and CE = 3 cm. The value of 'x' and 'y' are:
6 cm and 3 cm respectively
In ΔBFE&BDC
∠B=∠B (common angle)
∠BDC=∠BFE (corresponding angle)
∴ΔBFE ∼ ΔBDC (AA similarity criterion)
So, BCBE=CDEF=BDBF (Ratio of corresponding sides are equal in similar triangles)
xx+3=y4.5=BDBF ------ (1)
In ΔFDC & ΔFBA
∠F=∠F (common)
∠FDC=∠FBA (corresponding angle)
∴∠FDC ∼ ΔFBA (AA similarity criterion)
So, FDBF=y7.5 ------- (2)
From (1) we have BDBF=y4.5 ------- (3)
Adding (2) and (3), we get
FDBF+BDBF=y7.5+y4.5FD+BDBF=y(17.5+14.5)BFBF=y(4.5+7.57.5×4.5)y=7.5×4.512=33.7512=4516 cm
From (1) we have,
⇒ xx+3=y4.5⇒ xx+3=4516×4.5⇒ xx+3=58⇒ 8x=5x+15⇒ x=5 cm