In the figure given below, if lines PQ and RS intersect at point T, such that,
∠PRT=40∘, ∠RPT=95∘ and ∠TSQ=75∘, then find 2∠SQT.
120∘
In △PRT, ∠P+∠R+∠1=180∘.
(Sum of all the interior angles of a triangle is 180∘)
⇒95∘+40∘+∠1=180∘
⇒∠1=180∘–135∘=45∘
⇒∠1=∠2 (vertically opposite angles)
⇒∠2=45∘
In △TQS, ∠2+∠SQT+∠QST=180∘.
(Sum of all the interior angles of a triangle is 180∘)
⇒45∘+∠SQT+75∘=180∘
⇒∠SQT+120∘=180∘
⇒∠SQT=60∘
⇒2∠SQT=120∘