In triangle ABC,
AB = AC
⇒∠ABC=∠ACB
(angles opposite to equal sides are equal)
⇒∠ABC=∠ACB=67∘
⇒∠BAC=180∘−∠ABC∠ACB
(Angle sum property)
⇒∠BAC=180∘−67∘−67∘
⇒∠BAC=46∘
Since, ∠BAC<∠ABC, we have
BC < AC ----------- (1)
Now, ∠ACD=180∘−67∘=113∘
(linear pair)
Thus, in triangle ACD
⇒∠CAD=180∘−∠ACD∠ADC
(Angle sum property)
⇒∠CAD=180∘−113∘−33∘=34∘
Since, ∠ADC<∠CAD, we have
AC < CD ----------- (2)
From (1) and (2), we have
BC < AC < CD.