In the figure, if AC is bisector of ∠BAD such that AB = 3 cm and AC = 5 cm, then CD =
4 cm
In the figure, AC is the bisector of ∠BAD,
AB = 3 cm, AC = 5 cm
In ΔABC and ΔADC,
AC=AC (Common)
∠B=∠D (Each 90∘)
∠BAC=∠DAC
(∵ AC is the bisector of ∠A)
∴ ΔABC≅ ΔADC (AAS axiom)
∴ BC=CD and AB=AD (c.p.c.t.)
Now in right ΔABC,
AC2=AB2+BC2
⇒ (5)2=(3)2+BC2
⇒ 25=9+BC2⇒ BC2=25−9=16=(4)2
∴ BC=4 cm
But CD=BC
∴ CD=4 cm