In the figure, if ∠AOB=80o and ∠ABC=30o, then find ∠CAO.
In the figure, ∠AOB=80o, ∠ABC=30o
∵ Arc AB subtends ∠AOB at the centre and ∠ACB at the remaining part of the circle.
∴∠ACB=12∠AOB=12×80o=40o
In ΔOAB, OA=OB
∴∠OAB=∠OBA
But, ∠OAB+∠OBA+∠AOB=180o
∴∠OAB+∠OBA+80o=180o
⇒∠OAB+∠OAB=180o−80o=100o
∴2∠OAB=100o
⇒∠OAB=100o2=50o
Similarly, in ΔABC,
∠BAC+∠ACB+∠ABC=180o
∠BAC+40o+30o=180o
⇒∠BAC=180o−30o−40o
=180o−70o=110o
∴∠CAO=∠BAC−∠OAB
=110o−50o=60o