(D) 60∘
Given, ∠AOB=90∘ and ∠ABC=30∘
We know, that, in a circle the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle
∴ ∠AOB=2 ∠ACB
⇒ 90∘=2∠ACB [∴ ∠AOB=90∘, given]
⇒ ∠ACB=45∘
Also, AO=OB
∠ABO=∠BAO [angle opposite to equal sides are equal] .....(i)
In ΔOAB, ∠OAB+∠ABO+∠BOA=180∘ [angle sum property of a triangle]
∠OAB+∠OAB+90∘=180∘ [from Eq. (i)]
⇒ 2∠OAB=180∘−90∘
⇒ ∠OAB=90∘2=45∘
In ΔACB, ∠ACB+∠CBA+∠CAB=180∘ [ angle sum property of triangle]
∴ 45∘+30∘+∠CAB=180∘
⇒ ∠CAB=180∘−75∘=105∘
∴ ∠CAO+∠OAB=105∘
⇒ ∠CAO+∠OAB=105∘
∴ ∠CAO=105∘−45∘=60∘