In the figure if DE∥BC and AD=3x−2 , AE=5x−4 , BD=7X−4 , BD−7x−5 AND CE=5x−3. Find x.
Open in App
Solution
Given : In △ABC,DE∥BC we have to find the value of x △ABC,DE∥BC We have ∴ADBD=AECE (Using Thales Theorem)
⇒3x−27x−5=5x−45x−3
⇒(3x−2)(5x−3)=(5x−4)(7x−5) ⇒15x2−10x−9x+6=35x2−25x−28x+20 On solving we get, ⇒10x2−17x+7=0 ⇒10x(x−1)−7(x−1)=0 ⇒(x−1)(10x−7)=0 x=1 or x= 710 Hence, x=1 or 710