In the figure, lines PQ and RS intersect each other at point O; ray OA and ray OB bisect ∠POR and ∠POS respectively. If ∠POA:∠POB=2:7, then find ∠SOQ and ∠BOQ. [4 MARKS]
Concept: 1 Mark
Application: 2 Marks
Answer: 0.5 Mark each
∠POR+∠POS=180∘ ...(1) (Linear pair of angles)
It is given that ray OA and ray OB bisect ∠POR and ∠POS respectively.
Therefore, ∠POA=12∠POR
∠POB=12∠POS
∠POA+∠POB=12{POR+POS}
=12×180∘=90∘
∠POA+∠POB=2:7
Sum of the ratios = 2+7 = 9
∠POA=29×90∘=20∘
∠POB=79×90∘=70∘
∠POR=2×∠POA=2×20∘=40∘
∠SOQ=∠POR (Vertically opposite angles)
∴∠SOQ=40∘
∠BOQ=∠BOS+∠SOQ
=∠POB+∠SOQ
=70∘+40∘=110∘
∴∠BOQ=110∘