In the figure, lines XY and MN intersect at point O. If ∠POY = 90∘ and ∠ A: ∠B = 2:3, find C2.
Given in fig. ∠POY = 90∘
∠A: ∠B = 2:3
Let ∠A = 2x and ∠B = 3x
∠A + ∠B + ∠POY = 180∘ (∵ XOY is a line)
2x + 3x + 90∘ = 180∘
5x = 90∘
x = 905 = 18∘
∴ ∠A = 36∘ , ∠B = 54∘
MON is a line.
⇒ ∠B + ∠ C = 180∘
⇒ 54∘ + ∠C = 180∘
⇒ ∠C = 180∘ – 54∘ = 126∘
⇒ C2=63∘