In the figure, O is the centre of the circle. Find ∠CBD.
Arc AC subtends ∠AOC at the centre and ∠APC at the remaining part of the circle.
∴∠APC=12∠AOC=12×100∘=50∘
∵ APCB is a cyclic quadrilateral,
∴∠APC+∠ABC=180∘
⇒50∘+∠ABC=180∘
⇒∠ABC=180∘−50∘=130∘
But ∠ABC+∠CBD=180∘ (Linear Pair)
⇒130∘+∠CBD=180∘
⇒∠CBD=180∘−130∘=50∘
∴∠CBD=50∘