In the figure,
AC is the diameter of the circle, with centre as O,
OD || CB and ∠CAB=40o
In ΔABC,
∠B=90o
(Angle in a semicircle)
By angle sum property of triangle, we get,
∠BCA+∠ABC+∠BAC=180o
∠BCA+∠BAC+90o=180o
∠BCA+∠BAC=180o−90o
∠BCA+∠BAC=90o
x+40o=90o
x=90o−40o
We get,
x=50o
∵ OD || CB
Hence,
∠AOD=∠BCA (corresponding angles)
∠AOD=50o
But ∠AOD+∠DOC=180o (Linear pair)
50o+y=180o
y=180o−50o
We get,
y=130o
Therefore, x=50o and y=130o