In the figure, O is the centre of the circle. If ∠BCO=30o, find x and y.
Given−BA, BD & BC are the chords of the circle with centre O.AE⊥BC & OD⊥AE.∠OCE=30o.To find out−∠BAE=x=? And ∠DBC=y=? Solution−We join AD & DC.∠ABD=12∠AOD=12×90o=45o.(∵ The angle at the centre of a circle subtended by a chordis double of that at the circumference.).∴ In ΔOEC we have ∠COE=180o−(∠OEC+∠OCE)=180o−(90o+30o)=60o. (angle sum property of triangles)∴ ∠DOC=∠DOE−∠COE=90o−60o=30o.Now ∠DBC=y=12∠DOC=12×30o=15o.(∵ The angle at the centre of a circle subtended by a chordis double of that at the circumference.).Again ∠ABE=y+45o=45o+15o=60o.∴ In ΔABE we have ∠BAE=x=180o−(∠ABE+∠AEB)=180o−(60o+90o)=30o. (angle sum property of triangles)So x=30o & y=15o.Ans− Option B.