In the figure, O is the centre of the circle of radius 5 cm. P and Q are points on chords AB and CD respectively such that OP⊥AB, OQ⊥CD, AB||CD, AB=6 cm and CD=8 cm. Determine PQ.
7 cm
Given, AB=6 cm.
Then, AP=AB2=3 cm and CQ=CD2=4 cm
(∵ Perpendicular from the centre of a circle to a chord bisects the chord)
OA=OC=Radius=5 cm
⇒OP=√(OA2)−(AP2) [Pythagoras' theorem]
⇒OP=√52−32=√16=4 cm
Similarly, OQ=√OC2−CQ2
⇒OQ=√52−42=√9=3 cm
Therefore, PQ=PO+OQ=4+3=7 cm