In the figure, O is the centre of the circle with radius 5 cm. If tangent OP = 13 cm and OP intersects the circle at E. Find the perimeter of the ΔPCD, where CD is the tangent to the circle at E.
Open in App
Solution
OP = 13cm OA = 5cm Pythagoras theorem, ΔPOA, AP=√132−52=12cm CD is a target, So, ∠CEO=90∘ InΔPOA,tanθ=OAAP=512 - (1) ForΔPEC,tanθ=CEPE PE = OP – OE = 13 cm – 5 cm = 8 cm tanθ=CE8m 512=CE8 CE=4012=103 Similarly,ED=103;CE=AC=(103) Perimeter of PCD, PC + CD + DP = (PA – CA) + CE + ED + (PB + BD) = PA + PB = 26 cm