The answer is C.
In the given figure, producing OP, to intersect RQ at X. Since, OP ∥RS and RX is a transversal. So,
∠RXP=∠XRS [alternate angles]
⇒ ∠RXP=130∘ [∵ ∠QRS=130∘(given)].....(i) Now, RQ is all line segment.
So, ∠PXQ+∠RXP=180∘ [line pair axiom]
⇒ ∠PXQ=180∘−∠RXP=180∘−130∘ [From Eq. (i)]
⇒ ∠PXQ=50∘ In
ΔPQX, ∠OPQ is an exterior angle,
∴ ∠OPQ=∠PXQ+∠PQX [
∵ exterior angle = sum of two opposite interior angles]
⇒ 110∘=50∘+∠PQX ⇒ ∠PQX=110∘−50∘ ∴ ∠PQR=60∘ [∵ ∠PQX=∠PQR]