wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the figure, points P and Q are the centres of the circles. Radius QN=3cm, PQ=9cm. M is the point of contact of the circles. Line ND is the tangent to the larger circle. Point C lies on the smaller circle.The respective lengths of NC, ND and CD are
188488_55d195eb59a649b1981740916f930a5a.jpg

A
NC=33cm,ND=33cm&CD=63cm.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
NC=63cm,ND=63cm&CD=123cm.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
NC=33cm,ND=63cm&CD=33cm.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
NC=63cm,ND=123cm&CD=63cm.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C NC=33cm,ND=63cm&CD=33cm.
GivenQ&ParethecentresoftwocirclesC1&C2respectively.TheytoucheachotherexternallyatM.TheradiusofC1isQN=3cm.TheradiusofC2isPQ=9cm.NDisatangenttoC2fromNatD.NDintersectsC1atC.TofindoutNC=?ND=?CD=?SolutionPointsQ,M&Plieonthesamelinesincetwocirclestouchingeachotherexternallyhavetheircentresandthepointofcontactlieonthesameline.ButthelineNQMisadiameterofthecircleasprethegivenfigure.N,Q,M&Plieonthesamestraightline.SoQN=3cm=QM,MP=PQQM=(93)cm=6cm=PD.SoNM=(3+3)cmandNP=MN+MP=(6+6)cm=12cm...........(i)WejoinCM&PD.InΔPNDwehaveNDP=90o(NDisatangentatDandPDistheradiusthroughD.)ΔPNDisarightonewithPNashypotenuse.So,byPythagorasTheorem,wehaveND=NP2PD2=12262cm=63cm.NowNCM=90o(angleinasemicircle).betweenΔNCM&ΔNDPwehaveNCM=90o=NDPandPNDiscommon.SoΔNCM&ΔNDParesimilarones.NCND=NMNPNC=ND×NMNP=63×612cm=33cm.AlsoCD=NDNC=6333cm=33cm.SoNC=33cm,ND=63cm&CD=33cm.AnsOptionC.
257408_188488_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon