In the figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ∠ROS=12(∠QOS−∠POS).
Ray OR ⊥ROQ. OS is another ray lying between OP and OR.
To prove: ∠ROS=12(∠QOS−∠POS)
Proof: ∵RO⊥POQ
∴∠POR=90∘
⇒∠POS+∠ROS=90∘ ...(i)
⇒∠ROS=90∘−∠POS
But ∠POS+∠QOS=180∘ (Linear pair)
=2(∠POS+2∠ROS) [From (i)]
∠POS+∠QOS=2∠ROS+2∠POS
⇒2∠ROS=∠POS+∠QOS−2∠POS
=∠QOS−∠POS
∴ROS=12(∠QOS−∠POS)