In the figure, ray OS stand on a line POQ. Ray OR and ray OT are angle bisectors of ∠POS and ∠SOQ respectively. If ∠POS=x, find ∠ROT
Ray OR stands on a line POQ forming ∠POS and ∠QOS
OR and OT the angle bisects of ∠POS and ∠QOS respectively. ∠POS=x
But ∠POS+∠QOS=180∘ (Linear pair)
⇒x+∠QOS=180∘⇒∠QOS=180∘−x
∵ OR and OT are the bisectors of angle
∴∠ROS=x2
and ∠TOS=180∘−x2
∴∠ROT=∠ROS+∠TOS=x2+180∘−x2=x+180∘−x2=180∘2=90∘