In the figure △ABC is an equilateral triangle and △PBC is an isosceles triangle and ∠PBA=20∘
∵△ABC is an equilateral triangle.
∴∠ABC=60∘
⇒∠PBA+∠PBC=60∘
⇒20∘+∠PBC=60∘
⇒∠PBC=60∘−20∘=40∘
∵∠PBC is an isosceles triangle.
∴∠PBC=∠PCB=40∘
Now, in △BPC,
∠PBC+∠PCB+∠BPC=180∘
⇒80∘+∠BPC=180∘
⇒∠BPC=180∘−80∘=100∘