In the following case, use the remainder theorem and find the remainder when p(x) is divided by g(x). p(x)=7x3−x2+2x−1g(x)=1−2x
Open in App
Solution
The Remainder Theorem states that when you divide a polynomial p(x) by any factor (x−a); which is not necessarily a factor of the polynomial; you will obtain a new smaller polynomial and a remainder, and this remainder is the value of p(x) at x=a, that is p(a).
Here, it is given that the polynomial p(x)=7x3−x2+2x−1 and the factor is g(x)=1−2x, therefore, by remainder theorem, the remainder is p(12) that is: