The direction ratios of normal to the plane,
L1:a1x+b1y+c1z=0 are a1,b1,c1 and L2:a1x+b2y+c2z=0 are a2,b2,c2
L1∥L2, if a1a2=b1b2=c1c2
L1⊥L2, if a1a2+b1b2+c1c2=0
The angle between L1 and L2 is given by,
θ=cos−1∣∣
∣
∣
∣∣a1a2+b1b2+c1c2√a21+b21+c21.√a22+b22+c21∣∣
∣
∣
∣∣
The equations of the planse are 2x−2y+4z+5=0 and 3x−3y+6z−1=0.
Here a1=2,b1=−2,c1=4 and
a2=3,b2=−3,c2=6
a1a2+b1b2+c1c2=2×3+(−2)(−3)+4×6=6+6+24=36≠0
Thus, the given planes are nor perpendicular to each other.
Now
a1a2=23,b1b2=−2−3=23 and c1c2=46=23
∴
a1a2=b1b2=c1c2
Thus, the given planes are parallel to each other