The direction ratios of normal to the plane,
L1:a1x+b1y+c1z=0 are a1,b1,c1 and L2:a1x+b2y+c2z=0 are a2,b2,c2
L1∥L2, if a1a2=b1b2=c1c2
L1⊥L2, if a1a2+b1b2+c1c2=0
The angle between L1 and L2 is given by,
θ=cos−1∣∣
∣
∣
∣∣a1a2+b1b2+c1c2√a21+b21+c21.√a22+b22+c21∣∣
∣
∣
∣∣
The equations of the planes are 7x+5y+6z+30=0 and 3x−y−10z+4=0.
Here, a1=7,b1=5,c1=6
a2,b2=−1,c2=−10
a1a2+b1b2+c1c2=7×3+5×(−1)+6×(−10)=−44≠0
Therefore, the given planes are not perpendicular
a1a2=73,b1b2=5−1=−5,c1c2=6−10=−35
It can be
seen that a1a2≠b1b2≠c1c2
Therefore, the given planes are not parallel.
The angle between them is given by,
θ=cos−1∣∣
∣
∣∣7×3+5(−1)+6×(−10)√(7)2+(5)2+(6)2×√(3)2+(−1)2+(−10)2∣∣
∣
∣∣
=cos−1∣∣∣21−5−60√110×√110∣∣∣
=cos−1∣∣∣44110∣∣∣=cos−125