In the following, determine the set of values of k for which the given quadratic equation has real roots:
(i)2x2+3x+k=0(ii)2x2+x+k=0(iii)2x2−5x−k=0(iv)kx2+6x+1=0(v)3x2+2x+k=0
For the quadratic equation ax2+bx+c=0, roots are real if b2−4ac≥0
(i) 32−4×2×k≥0
⇒k≤98
(ii) 12−4×2k≥0
⇒k≤18
(iii) (−5)2−4×2×(−k)≥0
⇒k≥−258
(iv) 62−4k≥0
⇒k≤9
(v) 22−4×3×k≥0
⇒k≤13