wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

In the following, determine the value(s) of constant(s) involved in the definition so that the given function is continuous:
(i) fx=sin 2x5x,if x0 3k ,if x=0

(ii) fx=kx+5,if x2x-1,if x>2

(iii) fx=k(x2+3x),if x<0 cos 2x ,if x0

(iv) fx= 2 ,if x3ax+b, if 3<x<5 9 ,if x5

(v) fx=4 ,if x-1ax2+b,if -1<x<0cos x,if x0

(vi) fx=1+px-1-pxx,if -1x<0 2x+1x-2 ,if 0x1

(vii) fx= 5 ,ifx2ax+b,if2<x<10 21 ,ifx10

(viii) fx=k cos xπ-2x ,x<π2 3 ,x=π23 tan 2x2x-π,x>π2

Open in App
Solution

(i) Given: fx=sin 2x5x, if x03k, if x=0

If fx is continuous at x = 0, then
limx0fx=f0

limx0sin 2x5x=f0limx02sin 2x2×5x=f025limx0sin 2x2x=f025=3kk=215

(ii) Given: fx=kx+5, if x2x-1, if x>2

If fx is continuous at x = 2, then
limx2-fx=limx2+fx

limh0f2-h=limh0f2+hlimh0k2-h+5=limh02+h-12k+5=12k=-4k=-2

(iii) Given: fx=kx2+3x, if x<0cos 2x, if x0

If fx is continuous at x = 0, then
limx0-fx=limx0+fx

limh0f-h=limh0fhlimh0k-h2-3h=limh0cos 2h0=1 It is not possible

Hence, there does not exist any value of k, which can make the given function continuous.


(iv) Given: fx=2, if x3ax+b, if 3<x<59, if x5

If fx is continuous at x = 3 and 5, then
limx3-fx =limx3+fx and limx5-fx =limx5+fx

limh0f3-h=limh0f3+h and limh0f5-h=limh0f5+h limh02=limh0a3+h+b and limh0a5-h+b=limh092=3a+b and 5a+b=92=3a+b and 5a+b=9a=72 and b=-172

(v)

Given: fx=4, if x-1ax2+b, if -1<x<0cos x, if x0

If fx is continuous at x = −1 and 0, then
limx-1-fx =limx-1+fx and limx0-fx =limx0+fx

limh0f-1-h =limh0f-1+h and limh0f-h =limh0fh limh04 =limh0a-1+h2+b and limh0a-h2+b =limh0cos h4=a+b and b=1a=3 and b=1

(vi)

Given: fx=1+px-1-pxx, if -1x<02x+1x-2, if 0x1

If fx is continuous at x = 0, then
limx0-fx=limx0+fx

limh0f-h=limh0fh limh01-ph-1+ph-h=limh02h+1h-2limh01-ph-1+ph1-ph+1+ph-h1-ph+1+ph=limh02h+1h-2limh01-ph-1-ph-h1-ph+1+ph=limh02h+1h-2limh0-2ph-h1-ph+1+ph=limh02h+1h-2limh02p1-ph+1+ph=limh02h+1h-22p2=1-2p=-12

(vii)

Given: fx=5, if x2ax+b, if 2<x<1021, if x10

If fx is continuous at x = 2 and 10, then
limx2-fx =limx2+fx and limx10-fx =limx10+fx

limh0f2-h =limh0f2+h and limh0f10-h =limh0f10+h limh05 =limh0a2+h+b and limh0a10-h+b =limh021 5=2a+b ...1 and 10a+b=21 ...2On solving eqs. 1 and 2, we geta=2 and b=1


(viii)

Given: fx=k cos xπ-2x, x<π23 , x=π23 tan 2x2x-π, x>π2

If fx is continuous at x = π2, then
limxπ2-fx=fπ2

limh0fπ2-h = fπ2limh0fπ2-h = 3limh0k cos π2-hπ-2π2-h = 1limh0k sin hπ-π+2h = 1limh0k sin h2h = 1k2limh0sin hh = 1k2 = 1k = 2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon