The correct option is D ar(FED)=18ar(AFC)
Area (AFC) = area (AFD) + area (ADC)
=ar(BEF)+12ar(ABC)[In(iv),ar(BFE)=ar(AFD);ADismedianofΔABC]
=ar(BFE)+12×4ar(BDE)[In(i),ar(BDE)=14ar(ABC)]
=ar(BEF)+2ar(BDE)....(5)
Now, by (v),
ar (BFE) = 2ar(FED) …….(6)
ar(BDE)=ar(BFE)+ar(FED)
=2ar(FED)+ar(FED)
=3ar(FED) ……(7)
Therefore, from equations (5), (6), and (7),we get:
ar(AFC)=2ar(FED)+2×3ar(FED)=8ar(FED)
∴ar(AFC)=8ar(FED)
Hence, ar(FED)=18=ar(AFC)