In the following figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that ar(ΔABC)ar(ΔDBC)=AODO.
Open in App
Solution
Given, ABC and DBC are triangles on the same base BC. AD intersects BC at O.
To Prove that AreaofΔABCAreaofΔDBC=AODO.
Construction: Let us draw two perpendiculars AP and DM on the line BC.
Proof
We know that area of a triangle =12×Base×Height ∴ar(ΔABC)ar(ΔDBC)=12BC×AP12BC×DM=APDM..........(i)
In ΔAPOandΔDMO, ∠APO=∠DMO (Each angle equal to 90∘) ∠AOP=∠DOM (Vertically opposite angles) ∴ΔAPO∼ΔDMO (By AAA similarity criterion) ∴APDM=AODO ⇒area(ΔABC)area(ΔDBC)=AODO [from (i)]
Therefore, ar(ΔABC)ar(ΔDBC)=AODO.Hence proved.