In the following figure, ABCD to a trapezium with AB||DC. If AB =9 cm, DC =18 cm, CF =13.5 cm, AP =6 cm and BE =15 cm. Calculate:
(i) BC
(ii) AF
BC = 22.5 cm, AF = 27 cm
In the figure,
ABCD is a trapezium
AB||DC
AB=9cm, DC =18 cm, CF =13.5 cm
AP =6 cm and BE =15 cm
To find:
(i) BC
(ii) AF
In ΔAEB and ΔECF
∠AEB=∠CEF (Vertically opposite angles)
∠ABE=∠ECF (Alternate angles)
∴ΔAEB∼ΔECF (AA axiom)
⇒ABCF=BEEC⇒913.5=15EC
⇒BC=15×13.59=22.5cm
Similarly ΔAPB and ΔDPF
∠APB=∠DPF (Vertically opposite angles)
∠ABP=∠PDE (alternate angles)
∴ΔAPB∼ΔDPE (AA axiom)
∴ABDF=APPF
918+13.5=6PF⇒931.5=6PF
PF=6×31.59=21cm
∴AF=AP+PF
=6+21 =27 cm