Given ABC is a triangle such that AD is the bisector of ∠BAC.
To prove: AB > BD.
Proof:
∠BAD=CAD [∵ AD is the bisector of ∠BAC]
∠ADB>∠CAD.
[exterior angle of a triangle is greater than each of the opposite interior angles].
⇒∠ADB>∠BAD [from Eq.(i)].
⇒AB>BD [side opposite to greater angle is longer].