Given: △ABC, AD⊥BC, AC=26, CD=10, BC=42
Now, In △ACD,
AC2=CD2+AD2
262=102+AD2
AD2=576
AD=24
Now, In △ABD,
BD=BC−CD
BD=42−10
BD=32
AB2=BD2+AD2
AB2=322+242
AB2=1600
AB=40
Now, 6cosx−5cosy+8tany
= 6secx−5secy+8tany
= 6(HB)−5(HB)+8(PB)
= 6(ACAD)−5(ABBD)+8(ADBD
= 6(2624)−5(4032)+8(2432)
= 132−254+6
= 26−25+244
= 254
= 614