In the following figure, AE ⊥ BC, D is the mid point of BC, then x is equal to
If a, b, c, d are in G.p., prove that :
(i) (a2+b2),(b2+c2),(c2+d)2 are in G.P.
(ii) (a2−b2),(b2−c2),(c2−d)2 are in G.P.
(iii) 1a2+b2,1b2+c2,1c2+d2 are in G.P.
(iv) (a2+b2+c2),(ab+bc+cd),(b2+c2+d2)
In the given figure, D is the midpoint of side BC and AE ⊥ BC. If BC = a, AC = b, AB = c, ED = x, AD = p and AE = h, prove that
(i) b2=p2+ax+a24
(ii) c2=p2−ax+a24
(iii) (b2+c2)=2p2+12a2
(iv) (b2−c2)=2ax