In
△s BDC and BAP,
∠DBC=∠PBA (Common angle)
∠BDC=∠BPA (Corresponding angles)
∠BCD=∠BPA (Corresponding angles)
Thus,
△BDC∼△BAP (AAA rule)
Hence,
BCBP=BDAB .....
(i) (Corresponding sides)
Similarly, △BDE∼△BAC
Hence, BDAB=BEBC ...... (ii) (Corresponding sides)
Thus from (i) and (ii), we get
BEBC=BCBP
BCBE=BPBC ....... (Reciprocating)
BCBE−1=BPBC−1
BC−BEBE=BP−BCBC
ECBE=CPBC
BEEC=BCCP ...... (Reciprocating)