In
ΔABC,
∠ABC+∠BCA+∠CAB=180∘ [Angle sum property of triangle]
⇒64∘+∠BCA+52∘=180∘
⇒∠BCA=180∘−64∘−52∘=64∘
[1 mark]
∠FAE=∠BCA [
∵ Alternate angles;
AE∥BC, AC is the transversal]
⇒∠FAE=64∘
[1 mark]
Now,
∠FAE+x=180∘ [Adjacent angles in a parallelogram are supplementary]
⇒x=180∘−64∘∴x=116∘
[1 mark]